
Megaco/H.248

version 1.1

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 Megaco Users Guide 1

1.1 Introduction . 1

1.1.1 Scope and Purpose . 1

1.1.2 Prerequisites . 1

1.1.3 About This Manual . 2

1.1.4 Where to Find More Information . 2

1.2 Architecture . 2

1.2.1 Network view . 2

1.2.2 General . 4

1.2.3 Single node config . 5

1.2.4 Distributed config . 5

1.2.5 Message round-trip call flow . 6

1.3 Running the stack . 8

1.3.1 Starting . 8

1.3.2 MGC startup call flow . 9

1.3.3 MG startup call flow . 10

1.3.4 Configuring the Megaco stack . 12

1.3.5 Initial configuration . 13

1.3.6 Changing the configuration . 13

1.4 Internal form and its encodings . 13

1.4.1 Internal form of messages . 13

1.4.2 The different encodings . 14

1.4.3 Configuration of Erlang distribution encoding module 16

1.4.4 Configuration of text encoding module(s) . 16

1.4.5 Configuration of binary encoding module(s) . 17

1.5 Transport mechanisms . 17

1.5.1 Callback interface . 17

1.5.2 Examples . 17

1.6 Implementation examples . 17

1.6.1 A simple Media Gateway Controller . 17

iiiMegaco/H.248

1.6.2 A simple Media Gateway . 18

1.7 Performace comparison . 19

1.7.1 Comparison of encoder/decoders . 19

1.7.2 Description of encoders/decoders . 23

1.7.3 Setup . 24

1.7.4 Summary . 25

1.8 Testing and tools . 25

1.8.1 Tracing . 25

1.8.2 Measurement and transformation . 25

1.9 Megaco Release Notes . 28

1.9.1 Megaco 1.1.0 . 28

1.9.2 Megaco 1.0.4 . 29

1.9.3 Megaco 1.0.3 . 30

1.9.4 Megaco 1.0.2 . 30

1.9.5 Megaco 1.0.1 . 31

1.9.6 Megaco 1.0 . 31

1.9.7 Megaco 0.9.5 . 32

1.9.8 Megaco 0.9.4 . 32

1.9.9 Megaco 0.9.3 . 33

1.9.10 Megaco 0.9.2 . 33

1.9.11 Megaco 0.9.1 . 34

1.9.12 Megaco 0.9 . 34

2 Megaco Reference Manual 39

2.1 megaco . 44

2.2 megaco codec meas . 55

2.3 megaco codec transform . 56

2.4 megaco flex scanner . 58

2.5 megaco tcp . 59

2.6 megaco udp . 61

2.7 megaco user . 63

List of Figures 69

iv Megaco/H.248

Chapter 1

Megaco Users Guide

The Megaco application is a framework for building applications on top of the Megaco/H.248 protocol.

1.1 Introduction

Megaco/H.248 is a protocol for control of elements in a physically decomposed multimedia gateway,
enabling separation of call control from media conversion. A Media Gateway Controller (MGC)
controls one or more Media Gateways (MG).

This version of the stack is compliant with Megaco/H.248 version 1 (RFC3015) updated to
Implementors Guide version 6 (IGv6).

Please observe that some incompatible features is introduced by IGv6.

The semantics of the protocol has jointly been defined by two standardization bodies:

� IETF - which calls the protocol Megaco

� ITU - which calls the protocol H.248

1.1.1 Scope and Purpose

This manual describes the Megaco appliacation, as a component of the Erlang/Open Telecom Platform
development environment. It is assumed that the reader is familiar with the Erlang Development
Environment, which is described in a separate User’s Guide.

1.1.2 Prerequisites

The following prerequisites is required for understanding the material in the Megaco User’s Guide:

� the basics of the Megaco/H.248 protocol

� the basics of the Abstract Syntax Notation One (ASN.1)

� familiarity with the Erlang system and Erlang programming

The application requires Erlang/OTP release R7B or later.

1Megaco/H.248

Chapter 1: Megaco Users Guide

1.1.3 About This Manual

In addition to this introductory chapter, the Megaco User’s Guide contains the following chapters:

� Chapter 2: “Architecture” describes the architecture and typical usage of the application.

� Chapter 3: “Internal form and its encodings” describes the internal form of Megaco/H.248
messages and its various encodings.

� Chapter 4: “Transport mechanisms” describes how different mechanisms can be used to transport
the Megaco/H.248 messages.

� Chapter 5: “Debugging” describes tracing and debugging.

1.1.4 Where to Find More Information

Refer to the following documentation for more information about Megaco/H.248 and about the
Erlang/OTP development system:

� RFC 30151

� Implementors Guide version 62

� the ASN.1 User’s Guide

� the Reference Manual

� Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN 0-13-508301-X.

1.2 Architecture

1.2.1 Network view

Megaco is a (master/slave) protocol for control of gateway functions at the edge of the packet network.
Examples of this is IP-PSTN trunking gateways and analog line gateways. The main function of Megaco
is to allow gateway decomposition into a call agent (call control) part (known as Media Gateway
Controller, MGC) - master, and an gateway interface part (known as Media Gateway, MG) - slave. The
MG has no call control knowledge and only handle making the connections and simple configurations.

SIP and H.323 are peer-to-peer protocols for call control (valid only for some of the protocols within
H.323), or more generally multi-media session protocols. They both operate at a different level (call
control) from Megaco in a decomposed network, and are therefor not aware of wether or not Megaco is
being used underneath.

1URL: http://www.ietf.org/rfc/rfc3015.txt
2URL: http://www.erlang.org/project/megaco/standard/IGv6.pdf

2 Megaco/H.248

1.2: Architecture

Figure 1.1: Network architecture

Megaco and peer protocols are complementary in nature and entirely compatible within the same
system. At a system level, Megaco allows for

� overall network cost and performance optimization

� protection of investment by isolation of changes at the call control layer

� freedom to geographically distribute both call function and gateway function

� adaption of legacy equipment

3Megaco/H.248

Chapter 1: Megaco Users Guide

1.2.2 General

This Erlang/OTP application supplies a framework for building applications that needs to utilize the
Megaco/H.248 protocol.

We have introduced the term “user” as a generic term for either an MG or an MGC, since most of the
functionality we support, is common for both MG’s and MGC’s. A (local) user may be configured in
various ways and it may establish any number of connections to its counterpart, the remote user. Once
a connection has been established, the connection is supervised and it may be used for the purpose of
sending messages. N.B. according to the standard an MG is connected to at most one MGC, while an
MGC may be connected to any number of MG’s.

For the purpose of managing “virtual MG’s”, one Erlang node may host any number of MG’s. In fact it
may host a mix of MG’s and MGC’s. You may say that an Erlang node may host any number of “users”.

The protocol engine uses callback modules to handle various things:

� encoding callback modules - handles the encoding and decoding of messages. Several modules for
handling different encodings are included, such as ASN.1 BER, pretty well indented text,
compact text and some others. Others may be written by you.

� transport callback modules - handles sending and receiving of messages. Transport modules for
TCP/IP and UDP/IP are included and others may be written by you.

� user callback modules - the actual implementation of an MG or MGC. Most of the functions are
intended for handling of a decoded transaction (request, reply, acknowledgement), but there are
others that handles connect, disconnect and errors cases.

Each connection may have its own configuration of callback modules, re-send timers, transaction id
ranges etc. and they may be re-configured on-the-fly.

In the API of Megaco, a user may explicitely send action requests, but generation of transaction
identifiers, the encoding and actual transport of the message to the remote user is handled automatically
by the protocol engine according to the actual connection configuration. Megaco messages are not
exposed in the API.

On the receiving side the transport module receives the message and forwards it to the protocol engine,
which decodes it and invokes user callback functions for each transaction. When a user has handled its
action requests, it simply returns a list of action replies (or a message error) and the protocol engine uses
the encoding module and transport module to compose and forward the message to the originating user.

The protocol stack does also handle things like automatic sending of acknowledgements, pending
transactions, re-send of messages, supervision of connections etc.

In order to provide a solution for scalable implementations of MG’s and MGC’s, a user may be
distributed over several Erlang nodes. One of the Erlang nodes is connected to the physical network
interface, but messages may be sent from other nodes and the replies are automatically forwarded back
to the originating node.

4 Megaco/H.248

1.2: Architecture

1.2.3 Single node config

Here a system configuration with an MG and MGC residing in one Erlang node each is outlined:

Figure 1.2: Single node config

1.2.4 Distributed config

In a larger system with a user (in this case an MGC) distributed over several Erlang nodes, it looks a
little bit different. Here the encoding is performed on the originating Erlang node (1) and the binary is
forwarded to the node (2) with the physical network interface. When the potential message reply is
received on the interface on node (2), it is decoded there and then different actions will be taken for
each transaction in the message. The transaction reply will be forwarded in its decoded form to the
originating node (1) while the other types of transactions will be handled locally on node (2).

Timers and re-send of messages will be handled on locally on one node, that is node(1), in order to
avoid unneccessary transfer of data between the Erlang nodes.

5Megaco/H.248

Chapter 1: Megaco Users Guide

Figure 1.3: Distributes node config

1.2.5 Message round-trip call flow

The typical round-trip of a message can be viewed as follows. Firstly we view the call flow on the
originating side:

6 Megaco/H.248

1.2: Architecture

main encoder transportuser

megaco:cast/3

EncMod:decode_message/4

(ack requested)

EncMod:encode_message

megaco:recieve_message/4

SendMod:send_message/2

UserMod:handle_trans_reply/4

SendMod:send_message/2

EncMod:encode_message/2

recieve bytes(2)

send bytes(1)

send bytes(3)

Figure 1.4: Message Call Flow (originating side)

Then we continue with the call flow on the destination side:

7Megaco/H.248

Chapter 1: Megaco Users Guide

transport user

megaco:receive_message/2

EncMod:encode_message/2

UserMod:handle_trans_requeat/3

EncMod:decode_message/2

EncMod:decode_message/2

megaco:receive_message/4

SendMod:send_message/2

send bytes(2)

receive bytes(3)

receive bytes(1)

UserMod:handle_trans_ack/4

encodermain

Figure 1.5: Message Call Flow (destination side)

1.3 Running the stack

1.3.1 Starting

A user may have a number of “virtual” connections to other users. An MG is connected to at most one
MGC, while an MGC may be connected to any number of MG’s. For each connection the user selects a
transport service, an encoding scheme and a user callback module.

An MGC must initiate its transport service in order to listen to MG’s trying to connect. How the actual
transport is initiated is outside the scope of this application. However a send handle (typically a socket
id or host and port) must be provided from the transport service in order to enable us to send the
message to the correct destination. We do however not assume anything about this, from our point of
view, opaque handle. Hopefully it is rather small since it will passed around the system between
processes rather frequently.

8 Megaco/H.248

1.3: Running the stack

A user may either be statically configured in a .config file according to the application concept of
Erlang/OTP or dynamically started with the configuration settings as arguments to megaco:start user/2.
These configuration settings may be updated later on with megaco:update conn info/2.

The function megaco:connect/4 is used to tell the Megaco application about which control process it
should supervise, which MID the remote user has, which callback module it should use to send
messages etc. When this “virtual” connection is established the user may use megaco:call/3 and
megaco:cast/3 in order to send messages to the other side. Then it is up to the MG to send its first
Service Change Request message after applying some clever algorithm in order to fight the problem
with startup avalanche (as discussed in the RFC).

The originating user will wait for a reply or a timeout (defined by the request timer). When it receives
the reply this will optionally be acknowledged (regulated by auto ack), and forwarded to the user. If an
interim pending reply is received, the long request timer will be used instead of the usual request timer,
in order to enable avoidance of spurious re-sends of the request.

On the destination side the transport service waits for messages. Each message is forwarded to the
Megaco application via the megaco:receive message/4 callback function. The transport service may or
may not provide means for blocking and unblocking the reception of the incoming messages.

If a message is received before the “virtual” connection has been established, the connection will be
setup automatically. An MGC may be real open minded and dynamically decide which encoding and
transport service to use depending on how the transport layer contact is performed. For IP transports
two ports are standardized, one for textual encoding and one for binary encoding. If for example an
UDP packet was received on the text port it would be possible to decide encoding and transport on the
fly.

After decoding a message various user callback functions are invoked in order to allow the user to act
properly. See the megaco user module for more info about the callback arguments.

When the user has processed a transaction request in its callback function, the Megaco application
assembles a transaction reply, encodes it using the selected encoding module and sends the message
back by invoking the callback function:

� SendMod:send message(SendHandle, ErlangBinary)

Re-send of messages, handling pending transactions, acknowledgements etc. is handled automatically by
the Megaco application but the user is free to override the default behaviour by the various
configuration possibilities. See megaco:update user info/2 and megaco:update conn info/2 about the
possibilities.

When connections gets broken (that is explicitly by megaco:disconnect/2 or when its controlling
process dies) a user callback function is invoked in order to allow the user to re-establish the
connection. The internal state of kept messages, re-send timers etc. is not affected by this. A few
re-sends will of course fail while the connection is down, but the automatic re-send algorithm does not
bother about this and eventually when the connection is up and running the messages will be delivered
if the timeouts are set to be long enough. The user has the option of explicitly invoking
megaco:cancel/2 to cancel all messages for a connection.

1.3.2 MGC startup call flow

In order to prepare the MGC for the reception of the initial message, hopefully a Service Change
Request, the following needs to be done:

� Start the Megaco application.

� Start the MGC user. This may either be done explicitly with megaco:start user/2 or implicitly by
providing the -megaco users configuration parameter.

9Megaco/H.248

Chapter 1: Megaco Users Guide

� Initiate the transport service and provide it with a receive handle obtained from
megaco:user info/2.

When the initial message arrives the transport service forwards it to the protocol engine which
automatically sets up the connection and invokes UserMod:handle connect/2 before it invokes
UserMod:handle trans request/3 with the Service Change Request like this:

transport user

receive bytes(1)
megaco:receive_message/4

EncMod:decode_message/2

UserMod:handle_connect/3

SendMod:send_message/2

send bytes(2)

encodermain

EncMod:encode_message/2

Figure 1.6: MGC Startup Call Flow

1.3.3 MG startup call flow

In order to prepare the MG for the sending of the initial message, hopefully a Service Change Request,
the following needs to be done:

� Start the Megaco application.

� Start the MG user. This may either be done explicitly with megaco:start user/2 or implicitly by
providing the -megaco users configuration parameter.

� Initiate the transport service and provide it with a receive handle obtained from
megaco:user info/2.

� Setup a connection to the MGC with megaco:connect/4 and provide it with a receive handle
obtained from megaco:user info/2.

If the MG has been provisioned with the MID of the MGC it can be given as the RemoteMid
parameter to megaco:connect/4 and the call flow will look like this:

10 Megaco/H.248

1.3: Running the stack

main encoderuser

UserMod:handle_connect/2

(return of mecaco:return/4)

megaco:call/3

SendMod:send_message/2

(return of megaco:call/3)

EndMod:encode_message/2

EncMod:decode_message/2

megaco_receive_message/4

megaco:connect/4

transport

receive bytes(2)

send bytes(1)

Figure 1.7: MG Startup Call Flow

If the MG cannot be provisioned with the MID of the MGC, the MG can use the atom
’preliminary mid’ as the RemoteMid parameter to megaco:connect/4 and the call flow will look like
this:

11Megaco/H.248

Chapter 1: Megaco Users Guide

main encoder transportuser

(return of mecaco:return/4)

megaco:call/3

SendMod:send_message/2
send bytes(1)

EndMod:encode_message/2

UserMod:handle_connect/2 (RemoteMid = preliminary.mid)

megaco:connect/4 (RemoteMid = preliminary.mid)

receive bytes(2)

megaco_receive_message/4

EncMod:decode_message/2

(return of megaco:call/3)

UserMod:handle_connect/2 (RemoteMid = actual MID of MGC)

Figure 1.8: MG Startup Call Flow (no MID)

1.3.4 Configuring the Megaco stack

There are three kinds of configuration:

� User info - Information related to megaco users. Read/Write.
A User is an entity identified by a MID, e.g. a MGC or a MG.
This information can be retrieved using megaco:user info [page 45].

� Connection info - Information regarding connections. Read/Write.
This information can be retrieved using megaco:conn info [page 46].

� System info - System wide information. Read only.
This information can be retrieved using megaco:system info [page 47].

12 Megaco/H.248

1.4: Internal form and its encodings

1.3.5 Initial configuration

The initial configuration of the Megaco should be defined in the Erlang system configuration file. The
following configured parameters are defined for the Megaco application:

� users = [fMid, [user config()]g].

Each user is represented by a tuple with the Mid of the user and a list of config parameters (each
parameter is in turn a tuple: fItem, Valueg).

� scanner = flex | fModule, Function, Arguments, Modulesg

flex will result in the start of the flex scanner.
The other alternative makes it possible for Megaco to start and supervise a scanner written by the
user (see supervisor:start child for an explanation of the parameters).

1.3.6 Changing the configuration

The configuration can be changed during runtime. This is done with the functions
megaco:update user info [page 46] and megaco:update conn info [page 47]

1.4 Internal form and its encodings

This version of the stack is compliant with Megaco/H.248 version 1 (RFC3015) updated to
Implementors Guide version 6 (IGv6).

Please observe that some incompatible features is introduced by IGv6.

1.4.1 Internal form of messages

We use the same internal form for both the binary and text encoding. Our internal form of
Megaco/H.248 messages is heavily influenced by the internal format used by ASN.1 encoders/decoders:

� “SEQUENCE OF” is represented as a list.

� “CHOICE” is represented as a tagged tuple with size 2.

� “SEQUENCE” is represented as a record, defined in “megaco/include/megaco message v1.hrl”.

� “OPTIONAL” is represented as an ordinary field in a record which defaults to ’asn1 NOVALUE’,
meaning that the field has no value.

� “OCTET STRING” is represented as a list of unsigned integers.

� “ENUMERATED” is represented as a single atom.

� “BIT STRING” is represented as a list of atoms.

� “BOOLEAN” is represented as the atom ’true’ or ’false’.

� “INTEGER” is represented as an integer.

� “IA5String” is represented as a list of integers, where each integer is the ASCII value of the
corresponding character.

� “NULL” is represented as the atom ’NULL’.

13Megaco/H.248

Chapter 1: Megaco Users Guide

In order to fully understand the internal form you must get hold on a ASN.1 specification for the
Megaco/H.248 protocol, and apply the rules above. Please, see the documentation of the ASN.1
compiler in Erlang/OTP for more details of the semantics in mapping between ASN.1 and the
corresponding internal form.

Observe that the ’TerminationId’ record is not used in the internal form. It has been replaced with a
megaco term id record (defined in “megaco/include/megaco.hrl”).

1.4.2 The different encodings

The Megaco/H.248 standard defines both a plain text encoding and a binary encoding (ASN.1 BER)
and we have implemented encoders and decoders for both. We do in fact supply five different
encoding/decoding modules.

In the text encoding, implementors have the choice of using a mix of short and long keywords. It is also
possible to add white spaces to improve readability. We use the term compact for text messages with
the shortest possible keywords and no optional white spaces, and the term pretty for a well indented
text format using long keywords and an indentation style like the text examples in the Megaco/H.248
specification).

Here follows an example of a text message to give a feeling of the difference between the pretty and
compact versions of text messages. First the pretty, well indented version with long keywords:

MEGACO/1 [124.124.124.222]
Transaction = 9998 f

Context = - f
ServiceChange = ROOT f

Services f
Method = Restart,
ServiceChangeAddress = 55555,
Profile = ResGW/1,
Reason = "901 Cold Boot"

g
g

g
g

Then the compact version without indentation and with short keywords:

!/1 [124.124.124.222]
T=9998fC=-fSC=ROOTfSVfMT=RS,AD=55555,PF=ResGW/1,RE="901 Cold Boot"gggg

And the programmers view of the same message. First a list of ActionRequest records are constructed
and then it is sent with one of the send functions in the API:

Prof = #’ServiceChangeProfile’fprofileName = "resgw",
version = 1g,

Parm = #’ServiceChangeParm’fserviceChangeMethod = restart,
serviceChangeAddress = fportNumber, 55555g,
serviceChangeReason = "901 Cold Boot",
serviceChangeProfile = Profg,

Req = #’ServiceChangeRequest’fterminationID = [?megaco root termination id],
serviceChangeParms = Parmg,

Actions = [#’ActionRequest’fcontextId = ?megaco null context id,

14 Megaco/H.248

1.4: Internal form and its encodings

commandRequests = fserviceChangeReq, Reqgg],
megaco:call(ConnHandle, Actions, Config).

And finally a print-out of the entire internal form:

f’MegacoMessage’,
asn1 NOVALUE,
f’Message’,
1,
fip4Address,f’IP4Address’, [124,124,124,222], asn1 NOVALUEgg,
ftransactions,
[
ftransactionRequest,
f’TransactionRequest’,
9998,
[f’ActionRequest’,
0,
asn1 NOVALUE,
asn1 NOVALUE,
[
f’CommandRequest’,
fserviceChangeReq,
f’ServiceChangeRequest’,
[
fmegaco term id, false, ["root"]g],
f’ServiceChangeParm’,
restart,
fportNumber, 55555g,
asn1 NOVALUE,
f’ServiceChangeProfile’, "resgw", 1g,
"901 MG Cold Boot",
asn1 NOVALUE,
asn1 NOVALUE,
asn1 NOVALUE

g
g

g,
asn1 NOVALUE,
asn1 NOVALUE

g
]

g
]

g
g
]

g
g

g

The following encoding modules are supported:

15Megaco/H.248

Chapter 1: Megaco Users Guide

� megaco pretty text encoder - encodes messages into pretty text format, decodes both pretty as
well as compact text.

� megaco compact text encoder - encodes messages into compact text format, decodes both pretty
as well as compact text.

� megaco binary encoder - encode/decode ASN.1 BER messages. This encoder implements the
fastest of the BER encoders/decoders. Recommended binary codec.

� megaco ber encoder - encode/decode ASN.1 BER messages.

� megaco ber bin encoder - encode/decode ASN.1 BER messages. This encoder uses ASN.1 ber bin
which has been optimized using the bit syntax.

� megaco per encoder - encode/decode ASN.1 PER messages. N.B. that this format is not included
in the Megaco standard.

� megaco per bin encoder - encode/decode ASN.1 PER messages. N.B. that this format is not
included in the Megaco standard. This encoder uses ASN.1 per bin which has been optimized
using the bit syntax.

� megaco erl dist encoder - encodes messages into Erlangs distribution format. It is rather verbose
but encoding and decoding is blinding fast. N.B. that this format is not included in the Megaco
standard.

1.4.3 Configuration of Erlang distribution encoding module

The encoding config of the megaco erl dist encoder module may be one of these:

� [] - Encodes the messages to the standard distribution format. It is rather verbose but encoding
and decoding is blinding fast.

� [compressed] - Encodes the messages to a compressed form of the standard distribution format.
It is less verbose, but the encoding and decoding will on the other hand be slower.

1.4.4 Configuration of text encoding module(s)

When using text encoding(s), there is actually two different configs controlling what software to use:

� [] - An empty list indicates that the erlang codec should be used.

� [fflex, port()g] - Use the flex scanner when decoding.

The Flex scanner is a Megaco scanner written as a linked in driver (in C). There are two ways to get this
working:

� Let the Megaco stack start the flex scanner (load the driver).
To make this happen the megaco stack has to be configured:

– Add the fscanner, flexg directive to an Erlang system config file for the megaco app. This
will make the Megaco stack to initiate the default megaco receive handle with the
encoding config set to the [fflex, port()g].

– When retrieving the megaco receive handle, retain the encoding config.

The benefit of this is that Megaco handles the starting, holding and the supervision of the driver
and port.

� The Megaco client (user) starts the flex scanner (load the driver).
When starting the flex scanner a port to the linked in driver is created. This port has to be owned
by a process. This process must not die. If it does the port will also terminate. Therefor:

16 Megaco/H.248

1.5: Transport mechanisms

– Create a permanent process. Make sure this process is supervised (so that if it does die, this
will be noticed).

– Let this process start the flex scanner by calling the megaco flex scanner:start() function.
– Retrieve the port() and when initiating the megaco receive handle, set the

encoding config to [fflex, port()g].
– Pass the receive handle to the transport module.

1.4.5 Configuration of binary encoding module(s)

When using binary encoding, the structure of the termination id’s needs to be specified.

� [native] - skips the transformation phase, i.e. the decoded message(s) will not be transformed
into our internal form.

� [integer()] - A list containing the size (the number of bits) of each level. Example: [3,8,5,8].

� integer() - Number of one byte (8 bits) levels. N.B. This is currently converted into the previous
config. Example: 3 ([8,8,8]).

1.5 Transport mechanisms

1.5.1 Callback interface

The callback interface of the transport module contains several functions. Some of which are
mandatory while others are only optional:

� send message - Send a message. Mandatory

� block - Block the transport. Optional
This function is usefull for flow control.

� unblock - Unblock the transport. Optional

1.5.2 Examples

The Megaco/H.248 application contains implementations for the two protocols specified by the
Megaco/H.248 standard; UDP, see megaco udp [page 61], and TCP/TPKT, see megaco tcp [page 59].

1.6 Implementation examples

1.6.1 A simple Media Gateway Controller

In megaco/examples/simple/megaco simple mgc.erl there is an example of a simple MGC that listens
on both text and binary standard ports and is prepared to handle a Service Change Request message to
arrive either via TCP/IP or UDP/IP. Messages received on the text port are decoded using a text
decoder and messages received on the binary port are decoded using a binary decoder.

The Service Change Reply is encoded in the same way as the request and sent back to the MG with the
same transport mechanism UDP/IP or TCP/IP.

After this initial service change message the connection between the MG and MGC is fully established
and supervised.

The MGC, with its four listeners, may be started with:

17Megaco/H.248

Chapter 1: Megaco Users Guide

cd megaco/examples/simple
erl -pa ../../../megaco/ebin -s megaco filter -s megaco
megaco simple mgc:start().

or simply ’gmake mgc’.

The -s megaco filter option to erl implies, the event tracing mechanism to be enabled and an interactive
sequence chart tool to be started. This may be quite useful in order to visualize how your MGC
interacts with the Megaco/H.248 protocol stack.

The event traces may alternatively be directed to a file for later analyze. By default the event tracing is
disabled, but it may dynamically be enabled without any need for re-compilation of the code.

1.6.2 A simple Media Gateway

In megaco/examples/simple/megaco simple mg.erl there is an example of a simple MG that connects
to an MGC, sends a Service Change Request and waits synchronously for a reply.

After this initial service change message the connection between the MG and MGC is fully established
and supervised.

Assuming that the MGC is started on the local host, four different MG’s, using text over TCP/IP, binary
over TCP/IP, text over UDP/IP and binary over UDP/IP may be started on the same Erlang node with:

cd megaco/examples/simple
erl -pa ../../../megaco/ebin -s megaco filter -s megaco
megaco simple mg:start().

or simply ’gmake mg’.

If you “only” want to start a single MG which tries to connect an MG on a host named “baidarka”, you
may use one of these functions (instead of the megaco simple mg:start/0 above):

megaco simple mg:start tcp text("baidarka", []).
megaco simple mg:start tcp binary("baidarka", []).
megaco simple mg:start udp text("baidarka", []).
megaco simple mg:start udp binary("baidarka", []).

The -s megaco filter option to erl implies, the event tracing mechanism to be enabled and an interactive
sequence chart tool to be started. This may be quite useful in order to visualize how your MG interacts
with the Megaco/H.248 protocol stack.

The event traces may alternatively be directed to a file for later analyze. By default the event tracing is
disabled, but it may dynamically be enabled without any need for re-compilation of the code.

18 Megaco/H.248

1.7: Performace comparison

1.7 Performace comparison

1.7.1 Comparison of encoder/decoders

The Megaco/H.248 standard defines both a plain text encoding and a binary encoding (ASN.1 BER)
and we have implemented encoders and decoders for both. We do supply a bunch of different
encoding/decoding modules and the user may in fact implement their own (like our erl dist module).
Using a non-standard encoding format has its obvious drawbacks, but may be useful in some
configurations.

We have made four different measurements of our Erlang/OTP implementation of the Megaco/H.248
protocol stack, in order to compare our different encoders/decoders. The result of each one is
summarized in a line chart:

19Megaco/H.248

Chapter 1: Megaco Users Guide

Encoded message size in bytes

Figure 1.9: Encoded message size in bytes

20 Megaco/H.248

1.7: Performace comparison

Encode time in micro seconds

Figure 1.10: Encode time in micro seconds

21Megaco/H.248

Chapter 1: Megaco Users Guide

Decode time in micro seconds

Figure 1.11: Decode time in micro seconds

22 Megaco/H.248

1.7: Performace comparison

Sum of encode and decode time in micro seconds

Figure 1.12: Sum of encode and decode time in micro seconds

1.7.2 Description of encoders/decoders

In Appendix A of the Megaco/H.248 specification (RFC 3015), there are about 30 messages that shows
a representative call flow. We have used these example messages as basis for our measurements. The
numbers within parentheses are the plain average values. Our figures have not been weighted in regard
to how frequent the different kinds of messages that are sent between the media gateway and its
controller.

The test compares the following encoder/decoders:

� pretty - pretty printed text. In the text encoding, the protocol stack implementors have the choice
of using a mix of short and long keywords. It is also possible to add white spaces to improve

23Megaco/H.248

Chapter 1: Megaco Users Guide

readability. The pretty text encoding utilizes long keywords and an indentation style like the text
examples in the Megaco/H.248 specification.

� compact - the compact text encoding uses the shortest possible keywords and no optional white
spaces.

� ber - ASN.1 BER.

� per - ASN.1 PER. Not standardized as a valid Megaco/H.248 encoding, but included for the
matter of completeness as its encoding is extremely compact.

� erl dist - Erlang’s native distribution format. Not standardized as a valid Megaco/H.248 encoding,
but included as a reference due to its well known performance characteristics. Erlang is a
dynamically typed language and any Erlang data structure may be serialized to the erl dist format
by using predefined built-in functions.

The actual encoded messages have been collected in one directory per encoding type, containing one
file per encoded message.

Here follows an example of a text message to give a feeling of the difference between the pretty and
compact versions of text messages. First the pretty printed, well indented version with long keywords:

MEGACO/1 [124.124.124.222]
Transaction = 9998 f

Context = - f
ServiceChange = ROOT f
Services f
Method = Restart,
ServiceChangeAddress = 55555,
Profile = ResGW/1,
Reason = "901 MG Cold Boot"

g
g

g
g

Then the compact text version without indentation and with short keywords:

!/1 [124.124.124.222] T=9998f
C=-fSC=ROOTfSVfMT=RS,AD=55555,PF=ResGW/1,RE="901 MG Cold Boot"gggg

1.7.3 Setup

The measurements has been performed on a NoName PC, with an Intel P4 1800 MHz CPU, 512 MB
DDR memory running RedHat Linux 7.3, kernel 2.4.18. A pre-release of the OTP R9 release has been
used (2002-10-08).

24 Megaco/H.248

1.8: Testing and tools

1.7.4 Summary

In our measurements we have seen that there are no significant differences in message sizes between
ASN.1 BER and the compact text format. Some care should be taken when using the pretty text style
(which is used in all the examples included in the protocol specification and preferred during debugging
sessions) since the messages can then be quite large. If the message size really is a serious issue, our per
encoder should be used, as the ASN.1 PER format is much more compact than all the other alternatives.
Its major drawback is that it is has not been approved as a valid Megaco/H.248 message encoding.

When it comes to pure encode/decode performance, it turns out that our fastest text encoder
(compact) is about 15% faster than our fastest binary encoder (per). For decode the fastest binary
decoder (ber) is marginally better then our fastest text (compact). Please, observe that these
performance figures are related to our implementation in Erlang/OTP. Measurements of other
implementations using other tools and techniques may of course result in other figures. If the pure
encode/decode performance really is a serious issue, our erl dist encoder should be used, as the
encoding/decoding of the erlang distribution format is much faster than all the other alternatives. Its
major drawback is that it is has not been approved as a valid Megaco/H.248 message encoding.

1.8 Testing and tools

1.8.1 Tracing

We have instrumented our code in order to enable tracing. Running the application with tracing
deactivated, causes a neglectible performance overhead (an external call to a function which returns an
atom). Activation of tracing does not require any recompilation of the code, since we rely on
Erlang/OTP’s built in support for dynamic trace activation. In our case tracing of calls to a given
external function.

Event traces can be viewed in a generic message sequence chart tool, that we have written. It can either
be used in batch by loading event traces from file or interactively, as we are doing at demos and when
we debug our own code. The event trace stuff can for the moment be found under megaco/utils but,
will later be documented and released as an own application.

1.8.2 Measurement and transformation

We have included a simple tool for codec measurement and message transformation.

The tool is located in the example directory..

Requirement

� Erlang/OTP, version R8B or later.

� Version 1.0.2 or later of the this application.

� The flex libraries. Without it, the flex powered codecs cannot be used.

25Megaco/H.248

Chapter 1: Megaco Users Guide

Results

The results from the measurement run is four excel-compatible textfiles:

� decode time.xls -> Decoding result

� encode time.xls -> Encoding result

� total time.xls -> Total (Decoding+encoding) result

� message size.xls -> Message size

Instruction

The tool contain three things:

� The transformation module

� The measurement module

� The basic message file archive

Transformation module The transformation module is used to transform a set of messages encoded
with one codec into another other codec’s.

Example: Start an erlang node, and make sure it has the path to both the latest megaco ebin-dir as well
as the dir containing the transformation module:

% erl -pa <path-megaco-ebin-dir> -pa <path-to-tranformation-module-dir>
Erlang (BEAM) emulator version 5.1 [threads:0]

Eshell V5.1 (abort with ^G)
1> megaco_codec_transform:t(pretty, [compact, per, ber, erlang]).
...
2> halt().

or to make it even easier if you as above use pretty text as base:

% erl -noshell -pa <path-megaco-ebin-dir> -pa <path-to-tranformation-module-dir> \n

or using ber binary as base:

% erl -noshell -pa <path-megaco-ebin-dir> -pa <path-to-tranformation-module-dir> \n

Now the messages in the ’pretty’ directory has been trasnformed and stored into the other codec dir’s.

It is possible to transform from any codec to any other.

26 Megaco/H.248

1.8: Testing and tools

Measurement module The measurement module is used to measure the decode and encode the
messages in the codec dirs.

Example: Start an erlang node, and make sure it has the path to both the latest megaco ebin-dir as well
as the dir containing the measurement module:

% erl -pa <path-megaco-ebin-dir> -pa <path-to-meas-module-dir>
Erlang (BEAM) emulator version 5.1 [threads:0]

Eshell V5.1 (abort with ^G)
1> megaco_codec_meas:t([pretty, compact, per, ber, erlang]).
...
2> halt().

or to make it even easier, assuming a measure shall be done on all the codecs (as above):

% erl -noshell -pa <path-megaco-ebin-dir> -pa <path-to-meas-module-dir> \n -s

When run as above (this will take some time), the measurement process is done as followes:

For each codec:
For each message:

Read the message from the file
Measure decode
Measure encode

Write results, encode, decode and total, to file

The measure is done by iterating over the decode/encode function for approx 5 seconds and counting
the number of decodes/encodes.

Message file archive This is basically a gzipped tar file of a directory tree with the following
structure:

time_test/pretty/<message-files>
compact/
per/
ber/<message-files>
erlang/

The only directories containing any files are the pretty-dir and the ber-dir. It’s the same messages
encoded with different codec’s. This means it is possible to choose the message basis for the
(transformation and) measurement.

It is of course possible to add and remove messages at will. The messages included are the ones used in
our own measurements.

27Megaco/H.248

Chapter 1: Megaco Users Guide

Notes

Binary codecs There are two ways to use the binary encodings: With ([]) or without ([native])
package related names and termination id transformation. This transformation converts package related
names and termination id’s to a more convenient internal form (equivalent with the decoded text
message).

The transformation is done after the actual decode has been done.

Therefor in the tests, binary codecs are tested both with transformation ([]) and without transformation
([native]).

Included test messages These messages are ripped from the call flow examples in an old version of
the RFC.

Measurement tool directory name Be sure not no name the directory containing the measurement
binaries starting with ’megaco-’, e.g. megaco-meas. This will confuse the erlang application loader
(erlang applications are named, e.g. megaco-1.0.2).

1.9 Megaco Release Notes

This document describes the changes made to the Megaco system from version to version. The
intention of this document is to list all incompatibilities as well as all enhancements and bugfixes for
every release of Megaco. Each release of Megaco thus constitutes one section in this document. The
title of each section is the version number of Megaco.

1.9.1 Megaco 1.1.0

Version 1.1.0 supports code replacement in runtime from/to version 1.0.2, 1.0.3 and 1.0.4.

Improvements and new features

� Reply ack timeout now results in a call to callback function handle trans ack/4 with AckStatus =
ferror, timeoutg.
Own Id: OTP-4378

� The binary codecs ber bin and per bin is now both compiled with the +optimize compiler flag for
better runtime performance.
Own Id: OTP-4383

� The previously included tool, et, has been moved out of the Megaco application. It is now
provided as a separate application in OTP (as of R9).
Own Id: OTP-4487

� Added attribute app vsn to all modules.
Own Id: OTP-4486

28 Megaco/H.248

1.9: Megaco Release Notes

Fixed bugs and malfunctions

� Decode of oneStream incorrect.
.
Own Id: OTP-4490

� Transaction id counter wrapping incorrect when Max is infinity.
Incorrectly the documentation defined a connection info item min trans id. It should have been
trans id.
Own Id: OTP-4484

� Package name check in the text parser incorrect.
Own Id: OTP-4364

� Fixed a minor build problem causing the file ’megaco text parser.yrl’ to not be included in the
release.
Own Id: OTP-4363

Incompatibilities

-

Known bugs and problems

-

1.9.2 Megaco 1.0.4

Version 1.0.4 supports code replacement in runtime from/to version 1.0.2 and 1.0.3.

Improvements and new features

� Adding utility functions for megaco tracing.
Own Id: OTP-4339

Fixed bugs and malfunctions

� Optional line-number configure for the megaco flex scanner incorrect.
The intention was that line-numbering could be replaced with token number in order to improve
performance. This did not work (line-numbers was always chosen). This has no runtime effect.
Own Id: OTP-4336

� Improved error reporting from the megaco messenger module.
Own Id: OTP-4337

� Text parsing of type octet string erroneous.
Own Id: OTP-4357

� A message containing a transaction request without the transaction id value is incorrectly reported
back to the sender with a just an ErrorDescriptor. The correct behaviour is describen in chapter
8.1.1 of RFC 3015. Now the result will be a transactioReply with transaction id = 0 and an
ErrorDescriptor.
Own Id: OTP-4359
Aux Id: Seq 7330

29Megaco/H.248

Chapter 1: Megaco Users Guide

Incompatibilities

-

Known bugs and problems

-

1.9.3 Megaco 1.0.3

Improvements and new features

-

Fixed bugs and malfunctions

� Handling of comments in text messages incorrect.
For the ordinary text codec comments did not work. For the flex text codecs, double quoted
strings in comments did not work.
Own Id: OTP-4299
Aux Id: Seq 7330

� The streams field in MediaDescriptor, has been made optional in order to comply with IGv6
6.50. It does also mean that the new default value is asn1 NOVALUE.
Own Id: OTP-4288

� The user arguments was not supplied to the callback function handle unexpected trans as
described by megaco user [page 63].
Own Id: OTP-4290

Incompatibilities

� The scanner item of system info has been removed and instead been replaced by text config. Also
no longer contains any MFA info. From now on, just the text config.

Known bugs and problems

-

1.9.4 Megaco 1.0.2

Improvements and new features

� Added another binary decoder; per bin.
To be able to use the per bin encoder the ASN.1 application of version 1.3.2 or later is needed for
R8B systems. For R7B01, ASN.1 of version 1.3.1.3 or later must be used.

30 Megaco/H.248

1.9: Megaco Release Notes

Fixed bugs and malfunctions

� Memory leak in the flex scanner. Message larger then approx. 1000 bytes cannot be decoded.
Will cause a core dump! Note that this will only be a problem if the flex scanner has been
configured as encoding/decoding module!
Own Id: OTP-4236

� Fixed Makefile.in for the flex scanner. Removed unneccessary ’-lfl’ link option.
Own Id: OTP-4224

� Installed source was not placed in their proper (sub-) directory.

Incompatibilities

-

Known bugs and problems

-

1.9.5 Megaco 1.0.1

Improvements and new features

-

Fixed bugs and malfunctions

� The megaco application now forward’s unexpected replies. This is done with a call to
handle unexpected trans/3 [page 67].
Own Id: OTP-4212
Aux Id: Seq 7181

� Megaco leaves entries in the megaco replies table.
Own Id: OTP-4213
Aux Id: Seq 7208

Incompatibilities

-

Known bugs and problems

-

1.9.6 Megaco 1.0

Improvements and new features

� Flex scanner: Added scanner to system info.

31Megaco/H.248

Chapter 1: Megaco Users Guide

Fixed bugs and malfunctions

-

Incompatibilities

-

Known bugs and problems

-

1.9.7 Megaco 0.9.5

Improvements and new features

-

Fixed bugs and malfunctions

� Flex scanner: Decoding of digit map timer values fixed.

� Missed some files in the megaco app file.

Incompatibilities

-

Known bugs and problems

-

1.9.8 Megaco 0.9.4

Improvements and new features

� Added the flex scanner: This is a Megaco scanner (used when decoding incoming text messages)
written as a linked in driver (in C).

Fixed bugs and malfunctions

-

Incompatibilities

-

32 Megaco/H.248

1.9: Megaco Release Notes

Known bugs and problems

� Decoding of digit map timer values erroneous.

� The megaco flex scanner and megaco flex scanner handler modules was missing from the megaco
app file.

1.9.9 Megaco 0.9.3

Improvements and new features

-

Fixed bugs and malfunctions

� Transport modules: The included transport modules (megaco tcp & megaco udp) had a bug
causing incoming messages larger then 200 bytes not to be processed.

Note:
In order to be able to use the flex scanner, the library must be compiled. This is not done by default
in this version. To get it, cd to the Megaco top directory and type:

gmake ENABLE MEGACO FLEX SCANNER=true

Incompatibilities

-

Known bugs and problems

-

1.9.10 Megaco 0.9.2

Improvements and new features

� Binary encoding now up to date (including the Implementors Guide version 6).

� Message processing has been changed in order to improve perfomance. This change consists of

– The (message handling) process created by calling the function megaco:receive message,
has a larger minimum heap size.

– Adding a new function, megaco:process received message, that performs the message
processing in the context of the calling process.

Own Id: OTP-4110

� Text encoding: Handle the Topology Descriptor according to the IGv6.
Own Id: OTP-4088

33Megaco/H.248

Chapter 1: Megaco Users Guide

Fixed bugs and malfunctions

� Text encoding: Missing last curly bracket, “g”, results in error message “Error Code 400, Syntax
Error on Line 999999”. The line number information has been corrected.
Own Id: OTP-4085
Aux Id: Seq 7080

Incompatibilities

-

Known bugs and problems

� Transport modules: The included transport modules (megaco tcp & megaco udp) had a bug
causing incoming messages larger then 200 bytes not to be processed.

1.9.11 Megaco 0.9.1

Improvements and new features

-

Fixed bugs and malfunctions

� The ABNF keyword changes introduced in release 0.9 of the embed and emergency tokens, was
inconsistently implemented. It has now been corrected.

Incompatibilities

-

Known bugs and problems

-

1.9.12 Megaco 0.9

Improvements and new features

The application has been adpted to the Implementors Guide version 6 (IGv6).

� Added [] as default value for the #’ActionReply’.commandReply field, as a matter of
convenience.

� Enabled customized handling of transport errors. Instead of performing a brute disconnect, the
error reason returned by TransportMod:send message/2 is now propagated as
ferror,fsend message failed,Reasongg to UserMod:handle trans reply/4 or returned from
megaco:call/3 as other error cases. The old behaviour can still be achieved by a explicit call to
megaco:disconnect/2.

� The keepActive field in RequestedActions and SecondRequestedActions, has been made optional
in order to comply with IGv6 6.15. It does also mean that the new default value is asn1 NOVALUE.

34 Megaco/H.248

1.9: Megaco Release Notes

� The statValue field in StatisticsParameter, has been made optional in order to comply with IGv6
6.22. It does also mean that the new default value is asn1 NOVALUE.

� The short keyword for the embed token in the ABNF spec. has been changed from “EB” to “EM”
in order to comply with IGv6 6.6.

� The short keyword for the emergency token in the ABNF spec. has been changed from “EM” to
“EG” in order to comply with IGv6 6.6.

� A new timer has been introduced. It is called pending timer and implements the “provisonal
response timer” in the RFC. By using the new timer, pending transaction replies are sent
automatically, if the timer expires before a the final transaction reply has been sent by the user.

� A special “all” value for request identities has been introduced in order to comply with IGv6 6.30.
It is represented as ?megaco all request id (which is a constant defined in megaco.hrl) in the
internal form.

� The semantics of audit replies has been at last been made equal. The definition of ’AuditReply’
and ’AuditResult’ has been redefined in order to comply with IGv6 6.38. This does not affect
the ABNF spec. at all, but has some impact of the ASN.1 spec. and the internal form. The old
’AuditReply’ record hasd been replaced with a tagged tuple: fcontextAuditResult,
[#’TerminationID’fg]g or ferror, #’ErrorDescriptor’fgg or fauditResult, #’AuditResult’fgg. The
old tagged tuple representation of AuditResult has now been replaced with a
#’AuditResultfterminationID = #’TerminationID’fg, terninationAuditResult =
#’TerminationAudit’fgg record.

� The ASN.1 definition of the Value type has been changed in order to comply with IGv6 6.40.
This does not affect the ABNF spec. at all, but has some impact of the ASN.1 spec. and the
internal form. The old Value type (OCTET STRING) was represented as list of integers. The new
value type (SEQUENCE OF OCTET STRING) is represented as a list of elements where each
element is a list of integers.

� The ABNF definition modemDescriptor has been changed in order to comply with IGv6 6.42.
This affects the ABNF spec., but not the internal form.

� The ABNF definition auditOther has been changed in order to comply with IGv6 6.48. This
affects the ABNF spec., but not the internal form.

� The streams field in MediaDescriptor, has been made optional in order to comply with IGv6
6.50. It does also mean that the new default value is asn1 NOVALUE.

� A new extraInfo field has been introduced in both EventParameter and SigParameter in the
ASN.1 spec. in order to comply with IGv6 6.56. The new field is optional and defaults to
asn1 NOVALUE.

� A new timeStamp field has been introduced in ServiceChangeResParm in both the ASN.1 spec.
and the ABNF spec., in order to comply with IGv6 6.58. The new field is optional and defaults to
asn1 NOVALUE.

� The terminationID field in NotifyReply that earlier was optional in the ASN.1 spec. has now
been made mandatory, in order to comply with IGv6 6.62. The field does now default to [].

� The mtpAddress in both the mid and the serviceChangeAddress has been changed in the ASN.1
spec., in order to comply with IGv6 6.25 and IGv6 6.68 respectively. The old fixed size octet
string, has been replaced with a dynamic octet string whose size may range from 2 to 4.

� The serviceChangeAddress in ABNF has now been changed, in order to comply with IGv6 6.68.
From now on the serviceChangeAddress may either contain a plain port number or a complete
MID.

� The reservedValue and reservedGroup fields in the LocalControlDescriptor, has been made
optional in order to comply IGv6 6.69. It does also mean that the new default value is
asn1 NOVALUE.

35Megaco/H.248

Chapter 1: Megaco Users Guide

� The TransactionResponseAck has been redefined in ASN.1, in order to comply IGv6 6.70.

Fixed bugs and malfunctions

� Text encoding: Did not handle alternative list in property parm.
Own Id: OTP-4013
Aux Id: Seq 5301

� Text encoding: Allowed multiple mode parameters in Local Control Descriptor (the last was
choosen)..
Own Id: OTP-4011
Aux Id: Seq 5300

� Misspelled message “header” (MEGCAO instead of MEGACO) results in an reply with error
code 500 instead of 400 or 401.
Own Id: OTP-4007
Aux Id: Seq 5289

� Text encoding: Fixed a problem with termination id lists in audit replies: could only be of length
1.

� Fixed a race condition that could occur when a gateway was too eager too re-send its initial
service change message. Now the controller will reply on transaction requests with a pending
transaction in order to make the gateway back off until the automatic connect procedure has
completed. The other transaction types are silently ignored.

� Fixed the cause to the following error message:

=ERROR REPORT==== 17-Apr-2001::16:28:36 ===
Error in process <0.26230.0> on node ’cp1-19@b04d09’ with exit value:
ffbadmatch,unknown remote midg,[fmegaco messenger,fake conn data,4g,fmegaco messenger,process receive
,...

Incompatibilities

� The new pending timer may cause pending transaction replies to be sent. In order to obtain the
old behaviour the timer must explicitly be set to ’infinity’.

� The short keyword for the embed token in the ABNF spec. has been changed. See above for more
details.

� The short keyword for the emergency token in the ABNF spec. has been changed. See above for
more details.

� The keepActive field in RequestedActions and SecondRequestedActions has been made
optional. See above for more details.

� The statValue field in StatisticsParameter, has been made optional. See above for more details.

� A special “all” value for request identities has been introduced. See above for more details.

� The definitions of AuditReply and AuditResult has been redefined. See above for more details.

� The definition of the Value type has been changed. See above for more details.

� The streams field in MediaDescriptor, has been made optional. See above for more details.

� The terminationID field in NotifyReply, is now mandatory and asn1 NOVALUE is not a legal
value anymore. See above for more details.

36 Megaco/H.248

1.9: Megaco Release Notes

� The mtpAddress in both the mid and the serviceChangeAddress has been changed in the ASN.1
spec. See above for more details.

� The serviceChangeAddress in ABNF has now been changed. See above for more details.

� The reservedValue and reservedGroup fields in the LocalControlDescriptor has been made
optional. See above for more details.

Known bugs and problems

� Binary messages may currently be mapped to the native internal form of ASN.1, but the
framework for mapping of binary messages to an internal form, common for both text and binary
encodings is not ready yet.

37Megaco/H.248

Chapter 1: Megaco Users Guide

38 Megaco/H.248

Megaco Reference Manual

Short Summaries

� Erlang Module megaco [page 44] – Main API of the Megaco application

� Erlang Module megaco codec meas [page 55] – This module implements a simple
megaco codec measurement tool.

� Erlang Module megaco codec transform [page 56] – Megaco message
transformation utility.

� Erlang Module megaco flex scanner [page 58] – Interface module to the flex
scanner linked in driver.

� Erlang Module megaco tcp [page 59] – Interface module to TPKT transport
protocol for Megaco/H.248.

� Erlang Module megaco udp [page 61] – Interface module to UDP transport
protocol for Megaco/H.248.

� Erlang Module megaco user [page 63] – Callback module for users of the Megaco
application

megaco

The following functions are exported:

� start() -> ok | ferror, Reasong
[page 44] Starts the Megaco application

� stop() -> ok | ferror, Reasong
[page 44] Stops the Megaco application

� stop
[page 44] Stops the Megaco application

� start user(UserMid, Config) -> ok | ferror, Reasong
[page 44] Initial configuration of a user

� stop user(UserMid) -> ok | ferror, Reasong
[page 44] Delete the configuration of a user

� user info(UserMid, Item) -> Value | exit(Reason)
[page 45] Lookup user information

� update user info(UserMid, Item, Value) -> ok | ferror, Reasong
[page 46] Update information about a user

� conn info(ConnHandle, Item) -> Value | exit(Reason)
[page 46] Lookup information about an active connection

39Megaco/H.248

Megaco Reference Manual

� update conn info(ConnHandle, Item, Value) -> ok | ferror, Reasong
[page 47] Update information about an active connection

� system info(Item) -> Value | exit(Reason)
[page 47] Lookup system information

� connect(ReceiveHandle, RemoteMid, SendHandle, ControlPid) -> fok,
ConnHandleg | ferror, Reasong
[page 48] Establish a ”virtual” connection

� disconnect(ConnHandle, DiscoReason) -> ok | ferror, ErrReasong
[page 49] Tear down a ”virtual” connection

� call(ConnHandle, ActionRequests, Options) -> fProtocolVersion,
UserReplyg
[page 49] Sends a transaction request and waits for a reply

� cast(ConnHandle, ActionRequests, Options) -> ok | ferror, Reasong
[page 50] Sends a transaction request but does NOT wait for a reply

� cancel(ConnHandle, CancelReason) -> ok | ferror, ErrReasong
[page 50] Cancel all outstanding messages for this connection

� process received message(ReceiveHandle, ControlPid, SendHandle,
BinMsg) -> ok
[page 50] Process a received message

� receive message(ReceiveHandle, ControlPid, SendHandle, BinMsg) -> ok
[page 51] Process a received message

� parse digit map(DigitMapBody) -> fok, ParsedDigitMapg | ferror,
Reasong
[page 52] Parses a digit map body

� eval digit map(DigitMap) -> fok, Lettersg | ferror, Reasong
[page 52] Collect digit map letters according to the digit map

� eval digit map(DigitMap, Timers) -> fok, Lettersg | ferror, Reasong
[page 52] Collect digit map letters according to the digit map

� report digit event(DigitMapEvalPid, Events) -> ok | ferror, Reasong
[page 52] Send one or more events to the event collector process

� test digit event(DigitMap, Events) -> fok, Lettersg | ferror,
Reasong
[page 53] Feed digit map collector with events and return the result

� enable trace(Level, Destination) -> void()
[page 53] Start megaco tracing

� disable trace() -> void()
[page 54] Stop megaco tracing

� set trace(Level) -> void()
[page 54] Change megaco trace level

megaco codec meas

The following functions are exported:

� t() -> void()
[page 55]

� t(Dirs) -> void()
[page 55]

40 Megaco/H.248

Megaco Reference Manual

megaco codec transform

The following functions are exported:

� tt() -> void()
[page 56]

� tb() -> void()
[page 56]

� t([FromCodec, ToCodecs]) -> ok | ferror, Reasong
[page 56]

� t(FromCodec, ToCodecs) -> ok | ferror, Reasong
[page 56]

� tmf(FromFile, FromCodec, ToCodec) -> ok | ferror, Reasong
[page 56]

� tm(FromMsg, FromCodec, ToCodec) -> binary()
[page 57]

megaco flex scanner

The following functions are exported:

� start() -> fok, Portg | ferror, Reasong
[page 58]

megaco tcp

The following functions are exported:

� start transport() -> fok, TransportRefg
[page 59]

� listen(TransportRef, ListenPortSpecList) -> ok
[page 59]

� connect(TransportRef, OptionList) -> fok, Handle, ControlPidg |
ferror, Reasong
[page 59]

� close(Handle) -> ok
[page 59]

� socket(Handle) -> Socket
[page 60]

� send message(Handle, Message) -> ok
[page 60]

� block(Handle) -> ok
[page 60]

� unblock(Handle) -> ok
[page 60]

41Megaco/H.248

Megaco Reference Manual

megaco udp

The following functions are exported:

� start transport() -> fok, TransportRefg
[page 61]

� open(TransportRef, OptionList) -> fok, Handle, ControlPidg | ferror,
Reasong
[page 61]

� close(Handle, Msg) -> ok
[page 61]

� socket(Handle) -> Socket
[page 61]

� create send handle(Handle, Host, Port) -> send handle()
[page 62]

� send message(SendHandle, Msg) -> ok
[page 62]

� block(Handle) -> ok
[page 62]

� unblock(Handle) -> ok
[page 62]

megaco user

The following functions are exported:

� handle connect(ConnHandle, ProtocolVersion) -> ok | error |
ferror,ErrorDescrg
[page 64] Invoked when a new connection is established

� handle disconnect(ConnHandle, ProtocolVersion, Reason) -> ok
[page 64] Invoked when a connection is teared down

� handle syntax error(ReceiveHandle, ProtocolVersion, DefaultED) ->
reply | freply,EDg | no reply | fno reply,EDg
[page 64] Invoked when a received message had syntax errors

� handle message error(ConnHandle, ProtocolVersion, ErrorDescr) -> |
no reply
[page 65] Invoked when a received message just contains an error

� handle trans request(ConnHandle, ProtocolVersion, ActionRequests) ->
pending() | reply()
[page 65] Invoked for each transaction request

� handle trans long request(ConnHandle, ProtocolVersion, ReqData) ->
reply()
[page 66] Optionally invoked for a time consuming transaction request

� handle trans reply(ConnHandle, ProtocolVersion, UserReply,
ReplyData) -> ok
[page 66] Optionally invoked for a transaction reply

� handle trans ack(ConnHandle, ProtocolVersion, AckStatus, AckData) ->
ok
[page 67] Optionally invoked for a transaction acknowledgement

42 Megaco/H.248

Megaco Reference Manual

� handle unexpected trans(ReceiveHandle, ProtocolVersion, Trans) -> ok
[page 67] Invoked when an unexpected message is received

43Megaco/H.248

megaco Megaco Reference Manual

megaco
Erlang Module

Interface module for the Megaco application

Exports

start() -> ok | ferror, Reasong

Types:

� Reason = term()

Starts the Megaco application

Users may either explicitly be registered with megaco:start user/2 and/or be statically
configured by setting the application environment variable ’users’ to a list of fUserMid,
Configg tuples. See the function megaco:start user/2 for details.

stop() -> ok | ferror, Reasong

stop

Types:

� Reason = term()

Stops the Megaco application

start user(UserMid, Config) -> ok | ferror, Reasong

Types:

� UserMid = megaco mid()
� Config = [fuser info item(), user info value()g]
� Reason = term()

Initial configuration of a user

Requires the megaco application to be started. A user is either a Media Gateway (MG)
or a Media Gateway Controller (MGC). One Erlang node may host many users.

A user is identified by its UserMid, which must be a legal Megaco MID.

Config is a list of fItem, Valueg tuples. See megaco:user info/2 about which items and
values that are valid.

stop user(UserMid) -> ok | ferror, Reasong

Types:

� UserMid = megaco mid()
� Reason = term()

44 Megaco/H.248

Megaco Reference Manual megaco

Delete the configuration of a user

Requires that the user does not have any active connection.

user info(UserMid, Item) -> Value | exit(Reason)

Types:

� Handle = user info handle()
� UserMid = megaco mid()
� Item = user info item()
� Value = user info value()
� Reason = term()

Lookup user information

The following Item’s are valid:

connections Lists all active connections for this user. Returns a list of
megaco conn handle records.

receive handle Construct a megaco receive handle record from user config

min trans id First trans id. A positive integer, defaults to 1.

max trans id Last trans id. A positive integer or infinity, defaults to infinity.

request timer Wait for reply. A Timer (see explanation below, defaults to
#megaco incr timerfg.

long request timer Wait for reply after pending. A Timer (see explanation below,
defaults to infinity.

auto ack Automatic send transaction ack when a the transaction reply has been
received. A boolean, defaults to false.

pending timer Automatic send pending if the timer expires before a transaction reply
has been sent. This timer is also called provisional response timer. A Timer (see
explanation below, defaults to 30000.

reply timer Wait for an ack. A Timer (see explanation below, defaults to 30000.

send mod Send callback module which exports send message/2. The function
SendMod:send message(SendHandle, Binary) is invoked when the bytes needs to
be transmitted to the remote user. An atom, defaults to megaco tcp.

encoding mod Encoding callback module which exports encode message/2 and
decode message/2. The function EncodingMod:encode message(EncodingConfig,
MegacoMessage) is invoked whenever a ’MegacoMessage’ record needs to be
translated into an Erlang binary. The function
EncodingMod:decode message(EncodingConfig, Binary) is invoked whenever an
Erlang binary needs to be translated into a ’MegacoMessage’ record. An atom,
defaults to megaco pretty text encoder.

encoding config Encoding module config. A list, defaults to [].

protocol version Actual protocol version. Current default is 1.

reply data Default reply data. Any term, defaults to the atom undefined.

user mod Name of the user callback module. See the the reference manual for
megaco user for more info.

user args List of extra arguments to the user callback functions. See the the reference
manual for megaco user for more info.

45Megaco/H.248

megaco Megaco Reference Manual

A Timer may be:

infinity Means that the timer never will time out

Integer Waits the given number of milli seconds before it times out.

IncrTimer A megaco incr timer record. Waits a given number of milli seconds,
recalculates a new timer by multiplying a static factor and adding a static
increment and starts all over again after retransmitting the message again. A
maximum number of repetition can be stated.

update user info(UserMid, Item, Value) -> ok | ferror, Reasong

Types:

� UserMid = megaco mid()
� Item = user info item()
� Value = user info value()
� Reason = term()

Update information about a user

Requires that the user is started. See megaco:user info/2 about which items and values
that are valid.

conn info(ConnHandle, Item) -> Value | exit(Reason)

Types:

� ConnHandle = #megaco conn handlefg
� Item = conn info item()
� Value = conn info value()
� Reason = term()

Lookup information about an active connection

Requires that the connection is active.

control pid The process identifier of the controlling process for a conenction.

send handle Opaque send handle whose contents is internal for the send module. May
be any term.

receive handle Construct a megaco receive handle record.

trans id Next trans id. A positive integer.

max trans id Last trans id. A positive integer or infinity, defaults to infinity.

request timer Wait for reply. A Timer (see explanation below, defaults to
#megaco incr timerfg.

long request timer Wait for reply after pending. A Timer (see explanation below,
defaults to infinity.

auto ack Automatic send transaction ack when a the transaction reply has been
received. A boolean, defaults to false.

pending timer Automatic send transaction pending if the timer expires before a
transaction reply has been sent. This timer is also called provisional response timer.
A Timer (see explanation below, defaults to 30000.

reply timer Wait for an ack. A Timer (see explanation below, defaults to 30000.

46 Megaco/H.248

Megaco Reference Manual megaco

send mod Send callback module which exports send message/2. The function
SendMod:send message(SendHandle, Binary) is invoked when the bytes needs to
be transmitted to the remote user. An atom, defaults to megaco tcp.

encoding mod Encoding callback module which exports encode message/2 and
decode message/2. The function EncodingMod:encode message(EncodingConfig,
MegacoMessage) is invoked whenever a ’MegacoMessage’ record needs to be
translated into an Erlang binary. The function
EncodingMod:decode message(EncodingConfig, Binary) is invoked whenever an
Erlang binary needs to be translated into a ’MegacoMessage’ record. An atom,
defaults to megaco pretty text encoder.

encoding config Encoding module config. A list, defaults to [].

protocol version Actual protocol version. Current default is 1.

reply data Default reply data. Any term, defaults to the atom undefined.

A Timer may be:

infinity Means that the timer never will time out

Integer Waits the given number of milli seconds before it times out.

IncrTimer A megaco incr timer record. Waits a given number of milli seconds,
recalculates a new timer by multiplying a static factor and adding a static
increment and starts all over again after retransmitting the message again. A
maximum number of repetition can be stated.

update conn info(ConnHandle, Item, Value) -> ok | ferror, Reasong

Types:

� ConnHandle = #megaco conn handlefg
� Item = conn info item()
� Value = conn info value()
� Reason = term()

Update information about an active connection

Requires that the connection is activated. See megaco:conn info/2 about which items
and values that are valid.

system info(Item) -> Value | exit(Reason)

Types:

� Item = system info item()

Lookup system information

The following items are valid:

text config The text encoding config.

connections Lists all active connections. Returns a list of megaco conn handle records.

users Lists all active users. Returns a list of megaco mid()’s.

n active requests Returns an integer representing the number of requests that has
originated from this Erlang node and still are active (and therefore consumes
system resources).

47Megaco/H.248

megaco Megaco Reference Manual

n active replies Returns an integer representing the number of replies that has
originated from this Erlang node and still are active (and therefore consumes
system resources).

n active connections Returns an integer representing the number of active
connections.

connect(ReceiveHandle, RemoteMid, SendHandle, ControlPid) -> fok, ConnHandleg |
ferror, Reasong

Types:

� ReceiveHandle = #megaco receive handlefg
� RemoteMid = preliminary mid | megaco mid()
� SendHandle = term()
� ControlPid = pid()
� ConnHandle = #megaco conn handlefg
� Reason = term()

Establish a “virtual” connection

Activates a connection to a remote user. When this is done the connection can be used
to send messages (with SendMod:send message/2). The ControlPid is the identifier of a
process that controls the connection. That process will be supervised and if it dies, this
will be detected and the UserMod:handle disconnect/2 callback function will be
invoked. See the megaco user module for more info about the callback arguments. The
connection may also explicitly be deactivated by invoking megaco:disconnect/2.

The ControlPid may be the identity of a process residing on another Erlang node. This
is useful when you want to distribute a user over several Erlang nodes. In such a case
one of the nodes has the physical connection. When a user residing on one of the other
nodes needs to send a request (with megaco:call/3 or megaco:cast/3), the message will
encoded on the originating Erlang node, and then be forwarded to the node with the
physical connection. When the reply arrives, it will be forwarded back to the originator.
The distributed connection may explicitely be deactivated by a local call to
megaco:disconnect/2 or implicitely when the physical connection is deactivated (with
megaco:disconnect/2, killing the controlling process, halting the other node, ...).

The call of this function will trigger the callback function UserMod:handle connect/2 to
be invoked. See the megaco user module for more info about the callback arguments.

A connection may be established in several ways:

provisioned MID The MG may explicitely invoke megaco:connect/4 and use a
provisioned MID of the MGC as the RemoteMid.

upgrade preliminary MID The MG may explicitely invoke megaco:connect/4 with
the atom ’preliminary mid’ as a temporary MID of the MGC, send an intial
message, the Service Change Request, to the MGC and then wait for an initial
message, the Service Change Reply. When the reply arrives, the Megaco
application will pick the MID of the MGC from the message header and
automatically upgrade the connection to be a “normal” connection. By using this
method of establishing the connection, the callback function
UserMod:handle connect/2 to be invoked twice. First with a ConnHandle with the
remote mid-field set to preliminary mid, and then when the connection upgrade is
done with the remote mid-field set to the actual MID of the MGC.

48 Megaco/H.248

Megaco Reference Manual megaco

automatic When the MGC receives its first message, the Service Change Request, the
Megaco application will automatically establish the connection by using the MG
MID found in the message header as remote mid.

distributed When a user (MG/MGC) is distributed over several nodes, it is required
that the node hosting the connection already has activated the connection and that
it is in the “normal” state. The RemoteMid must be a real Megaco MID and not a
preliminary mid.

An initial megaco receive handle record may be obtained with
megaco:user info(UserMid, receive handle)

The send handle is provided by the preferred transport module, e.g. megaco tcp,
megaco udp. Read the documentation about each transport module about the details.

disconnect(ConnHandle, DiscoReason) -> ok | ferror, ErrReasong

Types:

� ConnHandle = conn handle()
� DiscoReason = term()
� ErrReason = term()

Tear down a “virtual” connection

Causes the UserMod:handle disconnect/2 callback function to be invoked. See the
megaco user module for more info about the callback arguments.

call(ConnHandle, ActionRequests, Options) -> fProtocolVersion, UserReplyg

Types:

� ConnHandle = conn handle()
� ActionRequests = [#’ActionRequest’fg]
� Options = [send option()]
� send option() = frequest timer, timer()g | flong request timer, timer()g |
fsend handle, term()g

� UserReply = success() | failure()
� success() = fok, [#’ActionReply’fg]g
� failure() = message error() | other error()
� message error() = ferror, error descr()g
� other error() = ferror, term()g

Sends a transaction request and waits for a reply

The function returns when the reply arrives, when the request timer eventually times
out or when the outstanding requests are explicitly cancelled.

The default values of the send options are obtained by megaco:conn info(ConnHandle,
Item). But the send options above, may explicitly be overridden.

The ProtocolVersion version is the version actually encoded in the reply message.

At success(), the UserReply contains a list of ’ActionReply’ records possibly containing
error indications.

A message error(), indicates that the remote user has replied with an explicit
transactionError.

An other error(), indicates some other error such as timeout or fuser cancel,
ReasonForCancelg.

49Megaco/H.248

megaco Megaco Reference Manual

cast(ConnHandle, ActionRequests, Options) -> ok | ferror, Reasong

Types:

� ConnHandle = conn handle()
� ActionRequests = [#’ActionRequest’fg]
� Options = [send option()]
� send option() = frequest timer, timer()g | flong request timer, timer()g |
fsend handle, term()g | freply data, reply data()g

� UserReply = success() | failure()
� success() = fok, [#’ActionReply’fg]g
� failure() = message error() | other error()
� message error() = ferror, error descr()g
� other error() = ferror, term()g
� Reason = term()

Sends a transaction request but does NOT wait for a reply

The default values of the send options are obtained by megaco:conn info(ConnHandle,
Item). But the send options above, may explicitly be overridden.

The ProtocolVersion version is the version actually encoded in the reply message.

The callback function UserMod:handle trans reply/4 is invoked when the reply arrives,
when the request timer eventually times out or when the outstanding requests are
explicitly cancelled. See the megaco user module for more info about the callback
arguments.

Given as UserData argument to UserMod:handle trans reply/4.

cancel(ConnHandle, CancelReason) -> ok | ferror, ErrReasong

Types:

� ConnHandle = conn handle()
� CancelReason = term()
� ErrReason = term()

Cancel all outstanding messages for this connection

This causes outstanding megaco:call/3 requests to return. The callback functions
UserMod:handle reply/4 and UserMod:handle trans ack/4 are also invoked where it
applies. See the megaco user module for more info about the callback arguments.

process received message(ReceiveHandle, ControlPid, SendHandle, BinMsg) -> ok

Types:

� ReceiveHandle = #megaco receive handlefg
� ControlPid = pid()
� SendHandle = term()
� BinMsg = binary()

50 Megaco/H.248

Megaco Reference Manual megaco

Process a received message

This function is intended to be invoked by some transport modules when get an
incoming message. Which transport that actually is used is up to the user to choose.

The message is delivered as an Erlang binary and is decoded by the encoding module
stated in the receive handle together with its encoding config (also in the receive
handle). Depending of the outcome of the decoding various callback functions will be
invoked. See megaco user for more info about the callback arguments.

Note that all processing is done in the context of the calling process. A transport
module could call this function via one of the spawn functions (e.g. spawn opt). See
also receive message/4.

If the message cannot be decoded the following callback function will be invoked:

� UserMod:handle syntax error/3

If the decoded message instead of transactions contains a message error, the following
callback function will be invoked:

� UserMod:handle message error/3

If the decoded message happens to be received before the connection is established, a
new “virtual” connection is established. This is typically the case for the Media Gateway
Controller (MGC) upon the first Service Change. When this occurs the following
callback function will be invoked:

� UserMod:handle connect/2

For each transaction request in the decoded message the following callback function will
be invoked:

� UserMod:handle trans request/3

For each transaction reply in the decoded message the reply is returned to the user.
Either the originating function megaco:call/3 will return. Or in case the originating
function was megaco:case/3 the following callback function will be invoked:

� UserMod:handle trans reply/4

When a transaction acknowledgement is received it is possible that user has decided not
to bother about the acknowledgement. But in case the return value from
UserMod:handle trans request/3 indicates that the acknowledgement is important the
following callback function will be invoked:

� UserMod:handle trans ack/4

See the megaco user module for more info about the callback arguments.

receive message(ReceiveHandle, ControlPid, SendHandle, BinMsg) -> ok

Types:

� ReceiveHandle = #megaco receive handlefg
� ControlPid = pid()
� SendHandle = term()
� BinMsg = binary()

51Megaco/H.248

megaco Megaco Reference Manual

Process a received message

This is a callback function intended to be invoked by some transport modules when get
an incoming message. Which transport that actually is used is up to the user to choose.

In principle, this function calls the process received message/4 function via a spawn
to perform the actual processing.

For further information see the process received message/4 function.

parse digit map(DigitMapBody) -> fok, ParsedDigitMapg | ferror, Reasong

Types:

� DigitMapBody = string()
� ParsedDigitMap = parsed digit map()
� parsed digit map() = term()
� Reason = term()

Parses a digit map body

Parses a digit map body, represented as a list of characters, into a list of state transitions
suited to be evaluated by megaco:eval digit map/1,2.

eval digit map(DigitMap) -> fok, Lettersg | ferror, Reasong

eval digit map(DigitMap, Timers) -> fok, Lettersg | ferror, Reasong

Types:

� DigitMap = #’DigitMapValue’fg | parsed digit map()
� parsed digit map() = term()
� ParsedDigitMap = term()
� Timers = ignore() | reject()
� ignore() = ignore | fignore, digit map value()g
� reject() = reject | freject, digit map value()g | digit map value()
� Letters = [letter()]
� letter() = $0..$9 | $a .. $k
� Reason = term()

Collect digit map letters according to the digit map

When evaluating a digit map, a state machine waits for timeouts and letters reported by
megaco:report digit event/2. The length of the various timeouts are defined in the
digit map value() record.

When a complete sequence of valid events has been received, the result is returned as a
list of letters.

There are two options for handling syntax errors (that is when an unexpected event is
received when the digit map evaluator is expecting some other event). The unexpected
events may either be ignored or rejected. The latter means that the evaluation is
aborted and an error is returned.

report digit event(DigitMapEvalPid, Events) -> ok | ferror, Reasong

Types:

� DigitMapEvalPid = pid()
� Events = Event | [Event]

52 Megaco/H.248

Megaco Reference Manual megaco

� Event = letter() | pause() | cancel()
� letter() = $0..$9 | $a .. $k | $A .. $K
� pause() = one second() | ten seconds()
� one second() = $s | $S
� ten seconds() = $l | $L
� cancel () = $z | $Z | cancel
� Reason = term()

Send one or more events to the event collector process

Send one or more events to a process that is evaluating a digit map, that is a process that
is executing megaco:eval digit map/1,2

test digit event(DigitMap, Events) -> fok, Lettersg | ferror, Reasong

Types:

� DigitMap = #’DigitMapValue’fg | parsed digit map()
� parsed digit map() = term()
� ParsedDigitMap = term()
� Timers = ignore() | reject()
� ignore() = ignore | fignore, digit map value()g
� reject() = reject | freject, digit map value()g | digit map value()
� DigitMapEvalPid = pid()
� Events = Event | [Event]
� Event = letter() | pause() | cancel()
� letter() = $0..$9 | $a .. $k | $A .. $K
� pause() = one second() | ten seconds()
� one second() = $s | $S
� ten seconds() = $l | $L
� cancel () = $z | $Z | cancel
� Reason = term()

Feed digit map collector with events and return the result

This function starts the evaluation of a digit map with megaco:eval digit map/1 and
sends a sequence of events to it megaco:report digit event/2 in order to simplify testing
of digit maps.

enable trace(Level, Destination) -> void()

Types:

� Level = max | min | 0 <= integer() <= 100
� Destination = File | Port | HandlerSpec
� File = string()
� Port = integer()
� HandleSpec = fHandlerFun, Datag
� HandleFun = fun() (two arguments)
� Data = term()

53Megaco/H.248

megaco Megaco Reference Manual

This function is used to start megaco tracing at a given Level and direct result to the
given Destination.

It starts a tracer server and then sets the proper match spec (according to Level).

See dbg for further information.

disable trace() -> void()

This function is used to stop megaco tracing.

set trace(Level) -> void()

Types:

� Level = max | min | 0 <= integer() <= 100

This function is used to change the megaco trace level.

It is assumed that tracing has already been enabled (see enable trace above).

54 Megaco/H.248

Megaco Reference Manual megaco codec meas

megaco codec meas
Erlang Module

This module implements a simple megaco codec measurement tool.

Results are written to file (excel compatible text files) and on stdout.

Note that this module is not included in the runtime part of the application.

Exports

t() -> void()

This function runs the measurement on all the official codecs; pretty, compact, ber, per
and erlang.

t(Dirs) -> void()

Types:

� Dirs = [codec()]
� codec() -> pretty | compact | ber | per | erlang

Runs the codecs as specified in Dirs. Note that the codec name used here is also
assumed to be the same as the directory containing the encoded messages used in the
measurement.

55Megaco/H.248

megaco codec transform Megaco Reference Manual

megaco codec transform
Erlang Module

This module implements a simple megaco message transformation utility.

Note that this module is not included in the runtime part of the application.

Exports

tt() -> void()

Transform messages using pretty text as base. Transform messages from pretty text
encoding to compact, ber, per and erlang encoding.

This call is equivalent to the call: t(pretty, [compact, ber, per, erlang])

tb() -> void()

Transform messages using ber binary as base. Transform messages from ber binary
encoding to pretty, compact, ber, per and erlang encoding.

This call is equivalent to the call: t(ber, [pretty, compact, per, erlang])

t([FromCodec, ToCodecs]) -> ok | ferror, Reasong

Types:

� FromCodec = codec string()
� ToCodecs = [codec string()]
� codec string() = ”pretty” | ”compact” | ”ber” | ”per” | ”erlang”

Called from the command line (shell) to transform all messages in a given codec dir to a
given list of codec dirs. The dirs will not be created.

Example: Converts from codec ber to codecs pretty, compact and per

erl -noshell -sname megaco ../ebin \n -run megaco_codec_transform t ber "pr

t(FromCodec, ToCodecs) -> ok | ferror, Reasong

Types:

� FromCodec = codec()
� ToCodecs = [codec()]
� codec() = pretty | compact | ber | per | erlang

Transforms all messages in a given codec dir to a given list of codec dirs. The dirs will
not be created.

tmf(FromFile, FromCodec, ToCodec) -> ok | ferror, Reasong

56 Megaco/H.248

Megaco Reference Manual megaco codec transform

Types:

� FromFile = string()
� FromCodec = codec()
� ToCodec = codec()

Transform a message in a file encoded with the given codec to another codec. The
resulting message is written to file, in the ToCodec dir.

tm(FromMsg, FromCodec, ToCodec) -> binary()

Types:

� FromMsg = binary()
� FromCodec = codec()
� ToCodec = codec()

Tranforms a message binary encoded with the given codec to another codec. The
resulting message is returned (as a binary).

57Megaco/H.248

megaco flex scanner Megaco Reference Manual

megaco flex scanner
Erlang Module

This module contains the public interface to the flex scanner linked in driver. The flex
scanner performs the scanning phase of text message decoding.

The flex scanner is written using a tool called flex. In order to be able to compile the
flex scanner driver, this tool has to be available.

By default the flex scanner reports line-number of an error. But it can be built without
line-number reporting. Instead token number is used. This will speed up the scanning
some 5-10%. Use --disable-megaco-flex-scanner-lineno when configuring the
application.

Exports

start() -> fok, Portg | ferror, Reasong

Types:

� Port = port()
� Reason = term()

This function is used to start the flex scanner. It locates the library and loads the linked
in driver.

Note that the process that calls this function must be permament. If it dies, the port will
exit and the driver unload.

58 Megaco/H.248

Megaco Reference Manual megaco tcp

megaco tcp
Erlang Module

This module contains the public interface to the TPKT (TCP/IP) version transport
protocol for Megaco/H.248.

Exports

start transport() -> fok, TransportRefg

Types:

� TransportRef = pid()

This function is used for starting the TCP/IP transport service. Use exit(TransportRef,
Reason) to stop the transport service.

listen(TransportRef, ListenPortSpecList) -> ok

Types:

� TransportRef = pid() | regname()
� OptionListPerPort = [Option]
� Option = fport, integer()g |foptions, list()g |freceive handle, term()g

This function is used for starting new TPKT listening socket for TCP/IP. The option list
contains the socket definitions.

connect(TransportRef, OptionList) -> fok, Handle, ControlPidg | ferror, Reasong

Types:

� TransportRef = pid() | regname()
� OptionList = [Option]
� Option = fhost, Ipaddrg | fport, integer()g |foptions, list()g |freceive handle,

term()g |fmodule, atom()g
� Handle = socket handle()
� ControlPid = pid()
� Reason = term()

This function is used to open a TPKT connection.

The module option makes it possible for the user to provide their own callback module.
The receive message/4 or process received message/4 functions of this module is
called when a new message is received (which one depends on the size of the message;
small - receive message, large - process received message). Default value is megaco.

close(Handle) -> ok

59Megaco/H.248

megaco tcp Megaco Reference Manual

Types:

� Handle = socket handle()

This function is used for closing an active TPKT connection.

socket(Handle) -> Socket

Types:

� Handle = socket handle()
� Socket = inet socket()

This function is used to convert a socket handle() to a inet socket(). inet socket() is a
plain socket, see the inet module for more info.

send message(Handle, Message) -> ok

Types:

� Handle = socket handle()
� Message = binary() | iolist()

Sends a message on a connection.

block(Handle) -> ok

Types:

� Handle = socket handle()

Stop receiving incomming messages on the socket.

unblock(Handle) -> ok

Types:

� Handle = socket handle()

Starting to receive incomming messages from the socket again.

60 Megaco/H.248

Megaco Reference Manual megaco udp

megaco udp
Erlang Module

This module contains the public interface to the UDP/IP version transport protocol for
Megaco/H.248.

Exports

start transport() -> fok, TransportRefg

Types:

� TransportRef = pid()

This function is used for starting the UDP/IP transport service. Use exit(TransportRef,
Reason) to stop the transport service.

open(TransportRef, OptionList) -> fok, Handle, ControlPidg | ferror, Reasong

Types:

� TransportRef = pid() | regname()
� OptionList = [option()]
� option() = fport, integer()g |foptions, list()g |freceive handle, term()g |fmodule,

atom()g
� Handle = socket handle()
� ControlPid = pid()
� Reason = term()

This function is used to open an UDP/IP socket.

The module option makes it possible for the user to provide their own callback module.
The functions receive message/4 or process received message/4 of this module is
called when a new message is received (which one depends on the size of the message;
small - receive message, large - process received message). Default value is megaco.

close(Handle, Msg) -> ok

Types:

� Handle = socket handle()
� Msg

This function is used for closing an active UDP socket.

socket(Handle) -> Socket

Types:

61Megaco/H.248

megaco udp Megaco Reference Manual

� Handle = socket handle()
� Socket = inet socket()

This function is used to convert a socket handle() to a inet socket(). inet socket() is a
plain socket, see the inet module for more info.

create send handle(Handle, Host, Port) -> send handle()

Types:

� Handle = socket handle()
� Host = fA,B,C,Dg | string()
� Port = integer()

Creates a send handle from a transport handle. The send handle is intended to be used
by megaco udp:send message/2.

send message(SendHandle, Msg) -> ok

Types:

� SendHandle = send handle()
� Message = binary() | iolist()

Sends a message on a socket. The send handle is obtained by
megaco udp:create send handle/3

block(Handle) -> ok

Types:

� Handle = socket handle()

Stop receiving incoming messages on the socket.

unblock(Handle) -> ok

Types:

� Handle = socket handle()

Starting to receive incoming messages from the socket again.

62 Megaco/H.248

Megaco Reference Manual megaco user

megaco user
Erlang Module

This module defines the callback behaviour of Megaco users. A megaco user compliant
callback module must export the following functions:

� handle connect/2

� handle disconnect/3

� handle syntax error/3

� handle message error/3

� handle trans request/3

� handle trans long request/3

� handle trans reply/4

� handle trans ack/4

� handle unexpected trans/3

The semantics of them and their exact signatures are explained below. There are a
couple data types that are common for many of the functions. These are explained here:

conn handle() Is the ’megaco conn handle’ record initially returned by
megaco:connect/4. It identifies a “virtual” connection and may be reused after a
reconnect (disconnect + connect).

protocol version() Is the actual protocol version. In most cases the protocol version
is retreived from the processed message, but there are exceptions:

� When handle connect/2 is triggered by an explicit call to megaco:connect/4.
� handle disconnect/3
� handle syntax error/3

In these cases, the ProtocolVersion default version is obtained from the static
connection configuration:

� megaco:conn info(ConnHandle, protocol version).

error descr() An ’ErrorDescriptor’ record.

The user args configuration parameter which may be used to extend the argument list
of the callback functions. For example, the handle connect function takes by default
two arguments:

� handle connect(Handle, Version)

but if the user args parameter is set to a longer list, such as [SomePid,SomeTableRef],
the callback function is expected to have these (in this case two) extra arguments last in
the argument list:

� handle connect(Handle, Version, SomePid, SomeTableRef)

63Megaco/H.248

megaco user Megaco Reference Manual

Exports

handle connect(ConnHandle, ProtocolVersion) -> ok | error | ferror,ErrorDescrg

Types:

� ConnHandle = conn handle()
� ProtocolVersion = protocol version()
� ErrorDescr = error descr()

Invoked when a new connection is established

Connections may either be established by an explicit call to megaco:connect/4 or
implicitely at the first invokaction of megaco:receive message/3.

Normally a Media Gateway (MG) connects explicitly while a Media Gateway
Controller (MGC) connects implicitly.

At the Media Gateway Controller (MGC) side it is possible to reject a connection
request (and send a message error reply to the gateway) by returning ferror,
ErrorDescrg or simply error which generates an error descriptor with code 402
(unauthorized) and reason “Connection refused by user” (this is also the case for all
unknown results, such as exit signals or throw).

handle disconnect(ConnHandle, ProtocolVersion, Reason) -> ok

Types:

� ConnHandle = conn handle()
� ProtocolVersion = protocol version()
� Reason = term()

Invoked when a connection is teared down

The disconnect may either be made explicitely by a call to megaco:disconnect/2 or
implicitely when the control process of the connection dies.

handle syntax error(ReceiveHandle, ProtocolVersion, DefaultED) -> reply | freply,EDg
| no reply | fno reply,EDg

Types:

� ReceiveHandle = receive handle()
� receive handle() = #megaco receive handlefg
� ProtocolVersion = protocol version()
� DefaultED = error descr()
� ED = error descr()

64 Megaco/H.248

Megaco Reference Manual megaco user

Invoked when a received message had syntax errors

Incoming messages is delivered by megaco:receive message/4 and normally decoded
successfully. But if the decoding failed this function is called in order to decide if the
originator should get a reply message (reply) or if the reply silently should be discarded
(no reply).

Syntax errors are detected locally on this side of the protocol and may have many
causes, e.g. a malfunctioning transport layer, wrong encoder/decoder selected, bad
configuration of the selected encoder/decoder etc.

The error descriptor defaults to DefaultED, but can be overridden with an alternate one
by returning freply,EDg or fno reply,EDg instead of reply and no reply respectively.

Any other return values (including exit signals or throw) and the DefaultED will be
used.

handle message error(ConnHandle, ProtocolVersion, ErrorDescr) -> | no reply

Types:

� ConnHandle = conn handle()
� ProtocolVersion = protocol version()
� ErrorDescr = error descr()

Invoked when a received message just contains an error instead of a list of transactions.

Incoming messages is delivered by megaco:receive message/4 and successfully decoded.
Normally a message contains a list of transactions, but it may instead contain an
ErrorDescriptor on top level of the message.

Message errors are detected remotely on the other side of the protocol. And you
probably don’t want to reply to it, but it may indicate that you have outstanding
transactions that not will get any response (request -> reply; reply -> ack).

handle trans request(ConnHandle, ProtocolVersion, ActionRequests) -> pending() |
reply()

Types:

� ConnHandle = conn handle()
� ProtocolVersion = protocol version()
� ActionRequests = [#’ActionRequest’fg]
� pending() = fpending, req data()g
� req data() = term()
� reply() = fack action(), actual reply()g
� ack action() = discard ack | fhandle ack, ack data()g
� actual reply() = [#’ActionReply’fg] | error descr()
� ack data() = term()

Invoked for each transaction request

Incoming messages is delivered by megaco:receive message/4 and successfully decoded.
Normally a message contains a list of transactions and this function is invoked for each
TransactionRequest in the message.

This function takes a list of ’ActionRequest’ records and has two main options:

65Megaco/H.248

megaco user Megaco Reference Manual

Return pending() Decide that the processing of these action requests will take a long
time and that the originator should get an immediate ’TransactionPending’ reply as
interim response. The actual processing of these action requests instead should be
delegated to the the handle trans long request/3 callback function with the
req data() as one of its arguments.

Return reply() Process the action requests and either return an error descr()
indicating some fatal error or a list of action replies (wildcarded or not).
The ack action() is either:

discard ack Meaning that you don’t care if the reply is acknowledged or not.
fhandle ack, ack data()g Meaning that you want an immediate

acknowledgement when the other part receives this transaction reply. When
the acknowledgement eventually is received, the handle trans ack/4 callback
function will be invoked with the ack data() as one of its arguments.
ack data() may be any Erlang term.

Any other return values (including exit signals or throw) will result in an error
descriptor with code 500 (internal gateway error) and the module name (of the callback
module) as reason.

handle trans long request(ConnHandle, ProtocolVersion, ReqData) -> reply()

Types:

� ConnHandle = conn handle()
� ProtocolVersion = protocol version()
� ActionRequests = [#’ActionRequest’fg]
� ReqData = req data()
� req data() = term()
� reply() = fack action(), actual reply()g
� ack action() = discard ack | fhandle ack, ack data()g
� actual reply() = [#’ActionReply’fg] | error descr()
� ack data() = term()

Optionally invoked for a time consuming transaction request

If this function gets invoked or not is controlled by the reply from the preceeding call to
handle trans request/3. The handle trans request/3 function may decide to process the
action requests itself or to delegate the processing to this function.

The req data() argument to this function is the Erlang term returned by
handle trans request/3.

Any other return values (including exit signals or throw) will result in an error
descriptor with code 500 (internal gateway error) and the module name (of the callback
module) as reason.

handle trans reply(ConnHandle, ProtocolVersion, UserReply, ReplyData) -> ok

Types:

� ConnHandle = conn handle()
� ProtocolVersion = protocol version()
� UserReply = success() | failure()
� success() = fok, [#’ActionReply’fg]g
� failure() = message error() | other error()

66 Megaco/H.248

Megaco Reference Manual megaco user

� message error() = ferror, error descr()g
� other error() = ferror, term()g
� ReplyData = reply data()
� reply data() = term()

Optionally invoked for a transaction reply

The sender of a transaction request has the option of deciding, whether the originating
Erlang process should synchronously wait (megaco:call/3) for a reply or if the message
should be sent asynchronously (megaco:cast/3) and the processing of the reply should
be delegated this callback function.

The ReplyData defaults to megaco:lookup(ConnHandle, reply data), but may be
explicitely overridden by a megaco:cast/3 option in order to forward info about the
calling context of the originating process.

At success(), the UserReply contains a list of ’ActionReply’ records possibly containing
error indications.

A message error(), indicates that the remote user has replied with an explicit
transactionError.

An other error(), indicates some other error such as timeout or fuser cancel,
ReasonForCancelg.

handle trans ack(ConnHandle, ProtocolVersion, AckStatus, AckData) -> ok

Types:

� ConnHandle = conn handle()
� ProtocolVersion = protocol version()
� AckStatus = ok | ferror, Reasong
� Reason = term()
� AckData = ack data()
� ack data() = term()

Optionally invoked for a transaction acknowledgement

If this function gets invoked or not, is controlled by the reply from the preceeding call
to handle trans request/3. The handle trans request/3 function may decide to return
fhandle ack, ack data()g meaning that you need an immediate acknowledgement of the
reply and that this function should be invoked to handle the acknowledgement.

The ack data() argument to this function is the Erlang term returned by
handle trans request/3.

If the AckStatus is ok, it is indicating that this is a true acknowledgement of the
transaction reply.

If the AckStatus is ferror, Reasong, it is indicating that the acknowledgement not was
delivered, but there is no point in waiting any longer for it to arrive. This happens either
when the reply timer eventually times out or when the user has explicitly cancelled the
wait (megaco:cancel/2).

handle unexpected trans(ReceiveHandle, ProtocolVersion, Trans) -> ok

Types:

� ReceiveHandle = receive handle()
� receive handle() = #megaco receive handlefg

67Megaco/H.248

megaco user Megaco Reference Manual

� ProtocolVersion = protocol version()
� Trans = ’TransactionPending’ | ’TransactionReply’ | ’TransactionResponseAck’

Invoked when a unexpected message is received

If a reply to a request is not received in time, the megaco stack removes all info about
the request from it’s tables. If a reply should arrive after this has been done the app has
no way of knowing where to send this message. The message is delivered to the “user”
by calling the this function on the local node (the node which has the the link).

68 Megaco/H.248

List of Figures

1.1 Network architecture . 3

1.2 Single node config . 5

1.3 Distributes node config . 6

1.4 Message Call Flow (originating side) . 7

1.5 Message Call Flow (destination side) . 8

1.6 MGC Startup Call Flow . 10

1.7 MG Startup Call Flow . 11

1.8 MG Startup Call Flow (no MID) . 12

1.9 Encoded message size in bytes . 20

1.10 Encode time in micro seconds . 21

1.11 Decode time in micro seconds . 22

1.12 Sum of encode and decode time in micro seconds . 23

69Megaco/H.248

List of Figures

70 Megaco/H.248

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

block/1
megaco tcp , 60
megaco udp , 62

call/3
megaco , 49

cancel/2
megaco , 50

cast/3
megaco , 50

close/1
megaco tcp , 59

close/2
megaco udp , 61

conn_info/2
megaco , 46

connect/2
megaco tcp , 59

connect/4
megaco , 48

create_send_handle/3
megaco udp , 62

disable_trace/0
megaco , 54

disconnect/2
megaco , 49

enable_trace/2
megaco , 53

eval_digit_map/1
megaco , 52

eval_digit_map/2
megaco , 52

handle_connect/2
megaco user , 64

handle_disconnect/3
megaco user , 64

handle_message_error/3
megaco user , 65

handle_syntax_error/3
megaco user , 64

handle_trans_ack/4
megaco user , 67

handle_trans_long_request/3
megaco user , 66

handle_trans_reply/4
megaco user , 66

handle_trans_request/3
megaco user , 65

handle_unexpected_trans/3
megaco user , 67

listen/2
megaco tcp , 59

megaco
call/3, 49
cancel/2, 50
cast/3, 50
conn_info/2, 46
connect/4, 48
disable_trace/0, 54
disconnect/2, 49
enable_trace/2, 53
eval_digit_map/1, 52
eval_digit_map/2, 52
parse_digit_map/1, 52
process_received_message/4, 50
receive_message/4, 51
report_digit_event/2, 52

71Megaco/H.248

Index of Modules and Functions

set_trace/1, 54
start/0, 44
start_user/2, 44
stop, 44
stop/0, 44
stop_user/1, 44
system_info/1, 47
test_digit_event/2, 53
update_conn_info/3, 47
update_user_info/3, 46
user_info/2, 45

megaco codec meas
t/0, 55
t/1, 55

megaco codec transform
t/2, 56
tb/0, 56
tm/3, 57
tmf/3, 56
tt/0, 56

megaco flex scanner
start/0, 58

megaco tcp
block/1, 60
close/1, 59
connect/2, 59
listen/2, 59
send_message/2, 60
socket/1, 60
start_transport/0, 59
unblock/1, 60

megaco udp
block/1, 62
close/2, 61
create_send_handle/3, 62
open/2, 61
send_message/2, 62
socket/1, 61
start_transport/0, 61
unblock/1, 62

megaco user
handle_connect/2, 64
handle_disconnect/3, 64
handle_message_error/3, 65
handle_syntax_error/3, 64
handle_trans_ack/4, 67
handle_trans_long_request/3, 66
handle_trans_reply/4, 66
handle_trans_request/3, 65
handle_unexpected_trans/3, 67

open/2
megaco udp , 61

parse_digit_map/1
megaco , 52

process_received_message/4
megaco , 50

receive_message/4
megaco , 51

report_digit_event/2
megaco , 52

send_message/2
megaco tcp , 60
megaco udp , 62

set_trace/1
megaco , 54

socket/1
megaco tcp , 60
megaco udp , 61

start/0
megaco , 44
megaco flex scanner , 58

start_transport/0
megaco tcp , 59
megaco udp , 61

start_user/2
megaco , 44

stop
megaco , 44

stop/0
megaco , 44

stop_user/1
megaco , 44

system_info/1
megaco , 47

t/0
megaco codec meas , 55

t/1
megaco codec meas , 55

t/2
megaco codec transform , 56

tb/0

72 Megaco/H.248

Index of Modules and Functions

megaco codec transform , 56

test_digit_event/2
megaco , 53

tm/3
megaco codec transform , 57

tmf/3
megaco codec transform , 56

tt/0
megaco codec transform , 56

unblock/1
megaco tcp , 60
megaco udp , 62

update_conn_info/3
megaco , 47

update_user_info/3
megaco , 46

user_info/2
megaco , 45

73Megaco/H.248

Index of Modules and Functions

74 Megaco/H.248

